
Game-O-Matic: Generating Videogames that Represent Ideas

Mike Treanor, Bryan Blackford, Michael Mateas and Ian Bogost
University of California Santa Cruz, Expressive Intelligence Studio

Georgia Institute of Technology

{mtreanor, bblackfo, michaelm}@soe.ucsc.edu

ibogost@gatech.edu

ABSTRACT

In this paper, we describe Game-O-Matic, a videogame authoring

tool and generator that creates games that represent ideas.

Through using a simple concept map input system, networks of

nouns connected by verbs, Game-O-Matic is able to assemble

simple arcade style game mechanics into videogames that

represent the ideas represented in the concept map. Inspired by a

view that videogames convey messages through their mechanics,

Game-O-Matic makes use of the rhetorical affordances of

explicitly defined abstract gameplay patterns, which we call

micro-rhetorics. This paper explains how Game-O-Matic uses the

concept map input to select appropriate abstract patterns of

gameplay and then how these mash ups of patterns are shaped into

coherent playable games that can be said to represent the user’s

intent.

Categories and Subject Descriptors

K.8.0 [Personal Computing]: General – Games. I.2.4 [Artificial

Intelligence]: Knowledge Representation Formalism and

Methods – Representations (procedural and rule-based).

General Terms

Design, Theory.

Keywords

Procedural content generation, game generation, game design,

procedural rhetoric.

1. INTRODUCTION
Game-O-Matic, a Knight News Challenge funded collaboration

between the Georgia Institute of Technology and the University of

California at Santa Cruz [3], is a piece of software that is able to

generate simple games based on input that lists objects, actors and

their relationships. Game-O-Matic was conceived to address a

problem facing newsgames: journalism has been hesitant to adopt

the form because news organizations don’t have the resources to

train or hire game designers and integrate game development into

their workflow. The difficult processes of game design and

programming are automated so that the journalist need only

conceive of their stories in a way that fits the input.

As much as possible, Game-O-Matic strives to create games that

represent ideas through their processes. Bogost argues that the

unique meaning-making strategy of games is "procedural

rhetoric," the act of making an expression or argument through a

game’s processes or rules [2]. In this way, Game-O-Matic

operationalizes a theory of procedural rhetoric for simple arcade-

style games and enables the rapid creation of editorial newsgames.

Previous work performing deep analysis of classic arcade games

has enabled us to create a framework for “proceduralist readings”

that describe how games rules, dynamics and instantial assets

interact to represent ideas to a player. Of course, interpretation is

inherently subjective, and no single media artifact can be said to

represent any one thing, so a proceduralist reading strives to be a

well formed, hierarchical argument for why a unit of gameplay

might be said to represent an idea. We call this explicit

hierarchical structure a meaning derivation [12]. For a

proceduralist reading, an interpretation is only as strong as the

meaning derivation that supports it. Thus we strive to create

games with as convincing a meaning derivation as possible.

Users of Game-O-Matic input actors (nodes) and the verbs that

describe the relationships between them (arrows between nodes).

This concept map structure is not an arbitrary interface for

entering news stories. It was carefully chosen because it

establishes a paradigm for reporting that values systems over

stories, and why/how over who/what/where/when. Static details

are best suited for traditional media, while the computational

nature of videogames excels at depicting dynamics [1].

Game-O-Matic generates games using a feed forward pipeline

with several points of generativity (figure 2). To start with, verbs

are entered to describe the relationship between entities and are

mapped to patterns of game mechanics (authored for the

component based PushButton game engine [6]). These mechanics

have rhetorical affordances that, when thematic elements are

applied, produce what we call micro-rhetorics. A micro-rhetoric is

a representational segment of gameplay within a videogame that

could be supported by a convincing meaning derivation. Often,

micro-rhetorics are combined to form the complete rhetoric of a

game. Previous work analyzing Activision’s Kaboom was the first

detailed analysis of micro-rhetorics and the rhetorical affordances

of game mechanics [10].

Next, these bundles of micro-rhetorics are analyzed by Game-O-

Matic’s recipe system to discover opportunities to make the

partially formed game (a bundle of micro-rhetorics) into more

coherent experiences. A recipe is a set of weighted precondition

predicates and modifications for the partially formed game.

Game-O-Matic makes use of three types of recipes: win (what win

condition would make the most sense given the bundle of micro-

rhetorics), lose (what lose condition would make the most sense

given the bundle of micro-rhetorics) and structure (how might the

entities be placed on the screen to afford interesting gameplay).

Appropriate recipes are selected by evaluating the definition

predicates to score the applicability of the recipe. Once the recipes

are selected and their recommendations are applied, all

appropriate “patches,” selected by preconditions, are applied.

These clean up any loose ends created by conflicts between

recipes.

The left side of figure 1 shows concept map input for Game-O-

Matic that represents a situation where Time makes Hunger, Man

needs Food, Food attacks Hunger and Man follows Food. On the

right is a game generated from that map where the player controls

Man trying to avoid collision with the Hunger that Time is

shooting towards it. If Hunger collides with Man, Man shrinks.

The player wins if he survives for an amount of time, and loses if

he gets too small. To win this game the player maneuvers Man

behind the Food which destroys the Hunger.

Game-O-Matic utilizes hand authored libraries of micro-rhetorics

and recipes to create games that reasonably represent specified

relationships between objects. It is our aim for Game-O-Matic

that it be able to generate games where an interpreter could create

a convincing meaning derivation that matches the concept map

input. This paper describes the details of how Game-O-Matic

preserves the intended representation from the user’s input while

maintaining a high degree of variability in the games it generates.

2. RELATED WORK
Generating videogames is a relatively new field with few

examples of combining basic rules into playable games. All of

these works (including Game-O-Matic) create single-screen

arcade-style games. The first two related works are focused on a

formal specification that reliably produces playable abstract

games, while the third provides a method for creating games with

a sensible representation, the final paper is an earlier work on

automatic game design.

Variations Forever is a game generator developed by Adam Smith

and Michael Mateas [8] which generates games using a

combination of answer set rules that define the game’s ruleset,

space, controls, etc. Answer set programming offers random

selection over a range of values, such as position or who is the

player, yielding generative space. The generated games can be

constrained to fall within certain mini-genres by adding to the

rules. Variations Forever’s games are selected from the solutions

to the set of rules. Game-O-Matic also uses a rule-based approach,

but the variations are selected based on a score against the

narrative mapping. Game-O-Matic’s preconditions are not strict in

order to provide greater variability between games or flexibility in

accommodating unusual narrative maps. This may occasionally

result in unwinnable games, but the genre of newsgames contains

several examples of unwinnable games such as Gonzalo Frasca’s

Kabul Kaboom. These games may be interpreted as expressing a

rhetoric of failure [11]. This type of game can be well suited for

expressing certain ideas, so we allow for a small percentage (less

than 5%) of unwinnable games, which will typically only be

produced after generating several winnable games.

The ANGELINA system, developed by Michael Cook and Simon

Colton [4], like Variations Forever, generates abstract arcade

games. The games are generated in 3 parts: the map, the layout (of

entities), and the ruleset (collisions, movement types, time limit,

and score limit). Each part is evolved through many generations

with separate fitness functions, and occasionally testing the fitness

of the parts together. The map part is a maze-like arrangement of

bricks on the grid that can impede or encase entities. This is a

Figure 1. Game-O-Matic’s concept map input (left) and a game that was generated to represent the ideas in the concept map.

Figure 2. An overall architecture diagram that shows Game-O-Matic’s main points of generativity.

component which Game-O-Matic currently lacks. As of now, we

rely on constraints to the movement of entities, and the only

environmental factor is the border of the screen. Although

sometimes entities will have components that cause them to

behave like walls. Still, the genetic algorithms used in

ANGELINA set it well apart from Game-O-Matic; the

independent fitness function produce variations in the games, and

the virtual playouts of the game’s combined parts ensure playable

games.

The work presented in this paper is most similar to Nelson and

Mateas’ work on generating skins for games with very simple

mechanics [7]. Given a verb and a noun, like “shoot a duck,”

Nelson and Mateas used a common sense knowledge base to find

an appropriate skin to apply to A and an appropriate game

mechanic from their library of game mechanics. For example, the

system would select a game where the player controls a set of

cross hairs and tries and click on a frantically moving around

duck. The system chose this mechanic and skin as it was more

appropriate to select than something like shooting a piano would

be, as a bird is something that can be shot. As will be described

below, Game-O-Matic relies on the user to supply sensible

relationships and does not prevent strange pairings, but, it is able

to combine multiple game patterns. However, using a similar

approach to and putting restrains on what valid verbs are could be

an interesting future direction.

Julian Togelius and Jürgen Schmidhuber’s foundational work on

generating videogame rules evolves games using a fitness function

built on theories of fun and learning [9]. The generator needs to

play the games to evaluate the fitness function, so controllers are

evolved as well. By changing a few parameters regarding the

consequences of collision, setup and behavior of entities, and

win/lose conditions, their system can generate Pac-Man-like

games. Game-O-Matic avoids the need for evolving games by

starting from a user supplied concept map and mapping those

concepts to representative game mechanics, the permutations of

which are scored to fit various videogame tropes, and the result is

typically playable.

3. FROM CONCEPT MAP TO MICRO-

RHETORICS

3.1 Concept Map Input
Users of Game-O-Matic input their desired stories in the form of a

concept map: networks of nodes and arrows where the nodes

contain actors in the story (nouns) and the arrows are labeled with

their relationships (verbs). This approach was arrived at after

analyzing classic arcade games with the intention of describing

the rhetorical relationships between game entities and finding that

the best way to describe what was happening on the screen was in

terms of these sort of simple relationships: “Space ship attacks

Invaders” (Space Invaders) or “Buckets protect World” (Kaboom)

[10].

It is important to note that accepting input in this form implies no

chronology; any that does appear in the generated games arises

from the dynamics of the micro-rhetorics simulated. Also, all

relationships are transitive and only involve two nouns. This

limitation was introduced to maximize accessibility for non-

technical users and is not a limitation of the approach.

The generator creates games treating the nouns as game entities

and uses the verbs to determine the mechanics that should be

applied to the entities. Currently, Game-O-Matic supports the

following verbs: arrests, attacks, avoids, carries, collects, deflects,

follows, gets, grows, harms, influences, makes, needs, obstructs,

prevents, wastes and watches.

3.2 Micro-Rhetorics
Every valid verb that the user enters into a concept map has a

corresponding set of micro-rhetorics that can be selected to

represent two entities with that relationship. A micro-rhetoric is a

representational segment of gameplay within a videogame. For

example, a possible micro-rhetoric for “A needs B” could be A

and B being represented as sprites, and the game mechanic that

unless A is colliding with B, A will constantly shrink. Game-O-

Matic primarily makes use of metaphorical representation, such as

entity A colliding with entity B causing B to be removed

representing A eating B, but micro-rhetorics can also take the

form of more accurate simulations, such as the mechanics that

deal with pollution from industrial zones in SimCity 4.

As previous work has shown, purely abstract game mechanics

cannot be said to represent concretely. How a set of abstract

mechanics are understood is determined by the interpreter’s

beliefs about the depicted objects participating in the mechanics.

For example, if A was a picture of a shoe, and B was a picture of

an ant, it is likely that an interpreter would understand a collision

between the shoe and the ant, followed by the removal of the ant

as the shoe killing the ant. Where if A was a bunny and B was a

carrot, the interpreter would understand a collision between the

bunny and the carrot followed by the removal of the carrot as the

bunny eating the carrot.

The micro-rhetorics that are mapped to Game-O-Matic’s verbs are

all said to have the verb as a rhetorical affordance. Rhetorical

affordances are the opportunities for representation made

available by the rules that govern the relationship between objects

and processes in a system. In order for Game-O-Matic to reliably

generate games that represent the input verbs, the user must input

actors that can be reasonably understood to be related by the verb

on the arrow between them.

Micro-rhetorics are represented by abstract entities and the game

mechanics that should involve them. As a high level example, a

micro-rhetoric for “harms” could be that A spawns a shape that

moves toward B, and when that shape collides with B, B shrinks.

Game-O-Matics’s system of mechanics is based on the highly

modular component-based framework of the PushButton Engine

(PBE), a Flash game engine [6]. PushButton is able to add a

behavior to an entity by simply declaring that the entity should

use a component with various parameters. Example components

include RemoveOnCollideComponent, DestroyIfOffScreen,

FollowBehind, and MouseController. This modularity matches

the conceptual theory of micro-rhetorics very well and, as will be

explained below, enables us to query the state of a game in the

generation process.

Micro-rhetorics also make use of a simple grammar structure to

support specifying sets of possible components than can be added

to component. These are useful for gameplay patterns where the

particulars of a component are not important, and several

component assignments could represent the verb. We simply call

these assignments non-terminals and they are denoted by an

underscore as their first character. For example, a non-terminal of

“_isVulnerable to target B” can be added to an entity A and any

component that could be understood as making A vulnerable to B

could be selected. Every PBE component is given a set of tags

that are used when the non-terminals are resolved (described

below). The current set of PBE components that are tagged with

_isVulnerable are RemoveOnCollideComponent,

ShrinkOnCollideComponent and StopOnCollideComponent.

Figure 3 shows the structure of a micro-rhetoric. Micro-rhetorics

are defined by a verb that it can represent, a specific id (to

distinguish between the multiple micro-rhetorics that represent the

same verb in the micro-rhetoric library), and a set of component

assignments. Component assignments specify which entity should

be assigned the component (the owner), any other entity involved

(the target) and the specific parameters that the particular

component should be assigned in order behave as desired by the

author of the micro-rhetoric. The owner and target values are

assigned either the subject or predicate from the “subject-verb-

predicate” concept map structure.

For example, consider a micro-rhetoric for the input “A avoids

B.” In this case A is the subject, B is the predicate and avoids is

the verb. This particular micro-rhetoric will describe a set of game

rules that will have A striving to avoid collision with B at risk of

being harmed in some way. The first component assignments are

to make sure that both the subject and predicate have the non-

terminal _moveInAnyWay. This non-terminal makes sure that

entities have some sort of movement behavior. Next,

ChaseDownComponent is assigned to the predicate with a

parameter of evaderName being set to the subject. This

demonstrates how micro-rhetoric can set variables that are

specific to particular PBE components – evaderName in this case.

Finally, a non-terminal component of _isVulnerable is assigned to

the subject with a target of the predicate. Because this micro-

rhetoric is defined with the non-terminals of _movesInAnyWay

and _isVulnerable, it can be realized in many different ways. For

example, the A could be moving erratically while B moves

directly toward it, and would shrink it upon collision, or the

player could control A with the mouse while being chased by B

which would remove A upon collision. How non-terminals are

resolved will be explained below.

With the above understanding of micro-rhetorics, we can explain

the first phase of Game-O-Matic’s generation process. For each

node in the concept map, an Entity data structure is created. These

structures mirror closely to the structures PBE uses to run games,

but we wait until the game is completely generated before we

“render” our internal data structures into a form that PBE will

accept. This is done to separate the generation code from the

workarounds we had to introduce as a result of PBE’s

implementation.

Next, one micro-rhetoric is selected for each verb and its

parametrized components are added to Entity structures that map

the nouns connected by the verb.

4. RECIPES: PARTIAL GAME

DESCRIPTIONS MADE COMPLETE
At this point in the generation process, we have generated a

partial game description made up of a list of entities and

parameterized, or non-terminal, behavior components that each

entity should have to represent the verbs in the concept map.

However, because micro-rhetorics are authored to be as abstract

as possible (to maximize the system’s generativity and component

compatibility) and there has not been any consideration given to

the overall shape of the game, there is no promise that the

partially formed game description will even have such necessary

features like win or lose conditions, an avatar to control, or

logically placed entities. The next phase of generation looks at the

partial game description, and selectively applies modifications to

add structure to the abstract rules generated in the concept map to

micro-rhetoric process.

Each set of modifications to the partial game description we call a

recipe. We call them recipes because the set of modifications can

be understood as instructions for how to make the game become

more like the gameplay pattern that the recipe was modeled after.

For example, there could be a recipe that specified that the game

could be won once all of one entity type has been removed from

the screen. Note how this recipe would not make sense to apply if

there was no behavior component that removed that entity. To

avoid this sort of situation, each recipe has a set of preconditions

which query the current partial game, and add or subtract from

that recipe’s salience score for the current game. The highest

scoring recipe is chosen and the selected recipe’s modifications

are applied.

4.1 Precondition Predicates
A recipe’s precondition is comprised of a set of predicates.

Predicates are queries about the current game description that can

be evaluated for truth. Each predicate can be a strict precondition

(if it doesn’t evaluate to true the recipe cannot be applied), or can

have independent true or false weights that are added to recipe’s

overall score.

Predicates can make queries about an arbitrary number of entities

in the working game description and are authored using logical

variables. For example, one predicate could query whether entity

X is controlled with the mouse, and another could ask if X is

spawned by Y. When evaluated, all possible combinations of

entity bindings to predicate roles are considered. If all strict

precondition predicates evaluate to true, and that recipe has gotten

the highest score, its score and entity/variable bindings (the

assignments to the variables that produced the score) are stored

and later its modifications applied.

Predicates can check if an entity has a component (explicit or non-

terminal) or if the entity is being controlled by the player. They

can also query the original concept map to see if the entity was the

subject or predicate connected by a verb in the concept map input

Figure 3. The structure of a Micro-Rhetoric.

4.2 Modifications
Every recipe has a set of modifications that are applied if the

recipe is selected. A modification changes the working game

description to give it sensible gameplay and structure.

Modifications can be made that add or remove components to an

entity, give the entity player control and set the scale, rotation and

placement of an entity. In a modification, entities are denoted by

logical variables that are resolved by the same variable bindings

that created the highest score for that recipe during precondition

evaluation. For example, one modification would be to add a

component to entity X that makes it follow Y closely.

Recipes also have access to a shared blackboard that recipe

modifications can write to and predicates can query. This is used

to allow recipes to communicate with one another about things

that aren’t easily represented in entities and components. For

example, one recipe can note on the blackboard that an entity is

intended to be the primary antagonist to the player and a later

recipe can use this when setting entity positions.

4.3 Types of Recipes
Three types of recipes are scored and then applied to a game in

sequence: win, lose and structure.

Win recipes determine the player’s goal. Examples include

remove all of one type of entity, having the player move to the

right side of the screen, and surviving for a specified amount of

time. Of course, not all partial game descriptions support all win

conditions. For example, if the player has no way to remove an

entity, it doesn’t make sense to have the goal be to remove all of

them from the screen. Preconditions and modifications enable us

understand the current state of the generated game and modify it

to be a more coherent game that players will understand how to

interact with.

Lose recipes determine what causes the player to lose the game.

Examples include running out of lives, failing to protect one

entity from another, and not getting a high score in a specified

amount of time.

Both win and lose recipes contain templates that are used on the

final game’s title screen to tell the player what he or she should

try to accomplish and try to avoid. For example, “Make %X%

huge to win” and “Lose if %Y% removes %Z%.” Also, in the

final game, upon triggering a win or lose condition a screen will

pop up that can hold custom text that the user can author in

Game-O-Matic’s interface.

At this point in the generation process, entities are specified, they

each have mechanics that represent the micro-rhetoric and there

are appropriate ways to win or lose the game. However, the game

lacks sensible structure. Where are the entities placed on the

screen? How big are they? Should specific entities be limited to

specific regions of the screen? This sort of information is what

structure recipes are meant to provide.

We roughly model structure recipes after classic arcade games.

For example, the structure of Frogger could be appropriate to

impose on a game where an entity A strives to collide with entity

B, but something negative happens to A when it collides with C.

In this case, the structure recipe would put A and B on opposite

sides of the screen and put C between them moving erratically in

order to create a challenge for the player. In terms of Frogger, A

is roughly the frog, B is the goal area (lily pad) and C acts like the

cars. In the current version of Game-O-Matic, we have defined

structure recipes based on Frogger, Space Invaders, Kaboom and

Asteroids.

Note that applying the structure of a classic arcade does not mean

that the generated game will be a simple skinned clone of the

arcade title. Not only will the player have different win and lose

conditions, but the mechanics of the game will be completely

different. For example, a game with the structure recipe inspired

by Space Invaders could have the player controlling the bullets of

the invaders trying to avoid colliding with the ship at the bottom

of the screen. Also, as structure recipes don’t modify the

movement behavior components established by the micro-

rhetorics, entities move in ways that can make the original game

inspiring the structure recipe unrecognizable. The purpose of

structure recipes is to ensure entities are spaced sensibly, in

reasonably familiar patterns, such that movement around the

screen maximizes the entity interactions specified by the micro-

rhetorics, such as the Frogger recipe maximizing the negative

interactions between entities A and C above.

4.4 Finalizing the Game
At this point, any remaining non-terminal components still

remaining in the entities after the recipe modifications have been

applied are resolved to specific PBE components.

Finally, a set of patches are applied to fix any unexpected

problems that arise from combining all of these independently

authored structures. These have the same form as the recipes,

except all preconditions are strict and all relevant patches are

applied (rather than just one). Patch preconditions often make use

Figure 4. Recipes are selected based on precondition predicates, which query the working game description, change the

working game description to make the games more sensible.

of the blackboard. For example, if the win condition is to make it

to the right side of the screen, and a structure recipe has moved

the player’s starting location away from the left side, a patch

would recognize this and move it back. The patch phase allows an

easy to author, case specific final check to make sure the

generated game is as good as it can be.

After the patches are applied, the complete game structure, made

up of entity and components specifications, is written out to

Pushbutton Engine’s XML level file format and the game can be

played.

5. EXAMPLE
The following section explains Game-O-Matic’s processes using a

specific example.

5.1 Concept Map
On the six month anniversary of the Occupy Wall Street

movement, protesters returned to New York's Zuccotti Park and

several were arrested [5]. Figure 5 shows a simple concept map

meant to capture a high level description of this story. From the

diagram we can see that the occupiers are obstructing Wall Street

and are being arrested by police, but Wall Street is also growing

the occupy movement. The concept map represents three

relationships between Wall Street, the occupiers and the police.

5.2 Micro-Rhetorics
For each verb, Game-O-Matic randomly selects one micro-

rhetoric that is tagged as representing it. For “arrests” in “police

arrests occupier,” it selects “take custody” micro-rhetoric. This

gives the police and occupier entities a _movesInAnyWay

component, and the occupier gets a StopOnCollideComponent

which targets the police. _movesInAnyWay is a player-agnostic,

non-terminal, which will be converted into a specific PBE

component later.

For “occupier obstructs wall street,” the obstructs micro-rhetoric

with the id of “freeze” is selected. This gives the

StopOnCollideComponent to Wall Street, thus preventing Wall

Street’s movement while colliding with an occupier. Other

possible micro-rhetorics for obstructs could have been “redirect”,

which would have given Wall Street a

ReflectOnCollideComponent with a target of the occupiers, which

would cause Wall Street to bounce off of the occupiers

Next, for “Wall Street grows Occupiers” a grow micro-rhetoric is

selected that gives the GrowOnCollideComponent to the

Occupiers with a target of Wall Street.

5.3 Choosing Recipes
At this point, the system knows all of the entities, and the micro-

rhetorics have given them a small set of components. Next, the

win, lose and structure recipes are scored based on the partial

game description and one of each type is applied. First, the win

recipes are scored. The first win recipe sets the win condition to

be for the player to “score 100 points.” This recipe has the

precondition:

 Y has a component of type _isVulnerable to X. [True:

+4/False: -0]

The Y and X in the preconditions are entity bindings, each recipe

will be scored for each possible combination. In the case of

Y=Wall Street, X=Occupier; the recipe has a score of +4, because

StopOnCollideComponent is tagged as being type

“_isVulnerable.” For Y=Occupier, X=Wall Street, the score is 0,

because GrowOnCollideComponent is not tagged in this way. If a

precondition such as “_isCollidable” (which both the Stop and

Grow components are tagged with) were used instead of

“_isVulnerable” the two bindings would have equal scores. The

highest scoring recipes are chosen from at random.

5.4 Applying Recipe Modifications
After selecting the winning win recipe, its modifications are

applied. Assuming it was “score 100 points” with Y=Wall Street,

X=Occupier; this recipe would make the following modifications:

1. Write to blackboard: removeToWin Y

2. Remove component: Y _isVulnerable with target X

(this will remove any components Y has that are tagged

as _isVulnerable)

3. Add component to Y: _isRemovedBy with target X

4. Add component to Y: ScoreRemovalOfComponent with

parameters: winScore=100, scoreEachRemoval=10

5. Add component to Y: RespawnOnRemoveComponent

6. Make X the player

As recipes are applied, the variables are substituted for their

bound entity. First we’ll write on the blackboard “Wall Street is

being removed to win,” which could be checked in the

preconditions of a later recipe.

Modification 2 removes the “_isVulnerable” tagged component

StopOnCollideComponent from Wall Street and modification 3

replaces the removed component with a stricter “_isRemovedBy”

component, such as RemoveOnCollideComponent in order to

guarantee that the player will be able to remove Wall Street and

win the game. Replacing a StopOnCollide from “obstructs” with

RemoveOnCollide constitutes a change to the micro-rhetorics first

built from the concept map. Occupier removing Wall Street as a

form of obstruction seems reasonable. This rhetorical leap enables

Game-O-Matic to give novel interpretations of the system

represented in the concept map.

Modification 4 adds a ScoreRemovalOfComponent to Wall

Street, so that each time it is removed, 10 points are added to the

score, and if the score is 100, the game is won. Modification 5

makes Wall Street respawn each time it is removed, so that the

win score can be reached. Finally, modification 6 gives the player

control over the Occupier..

Next, the lose and structure recipes are scored and the highest

scoring one’s modifications are applied. For the example below,

the “run out of time” lose recipe is selected, which adds a

Figure 5. An example concept map created to represent a

news paper article

MeterComponent to the World. The World is an entity which

holds global components, such as UI elements and components

which instantiate entities into the game.

Next assume the Frogger structure recipe is selected, which

places the player on the left, an entity which collides with the

player on the right, and several of another entity in the middle, in

this case the Police. The middle entities have their movement

restricted to vertical bars. The right-side entity, Wall Street, is set

to double size.

5.5 Finalizing the Game
If a recipe hasn’t already set the player, one is selected randomly

from the nouns on the concept map. Non-terminal components are

resolved to terminal components, then patch recipes are applied.

Patch recipes aren’t scored; they are all applied if their

preconditions are met. The “everything moves” patch gives a

movement component to every entity which does not have one.

After all patches are applied, any remaining non-terminal

components are resolved, and the instruction text for the start

screen is generated.

At this point, all entity components are in place and we can start

generating the XML which will be read into the PushButton

engine. As we generate, some component parameters will have a

single value, but others will have a range of values, which we

select over randomly. For example, if a micro-rhetoric or recipe

modification has not set a components parameter, such as

movement speed, the value is randomly selected from a defined

range defined per parameter.

With the XML generated, we can load it into the game engine.

Components like MeterComponent and

ScoreRemovalOfComponent will report to the UI to get their

elements put on the screen.

The left side of figure 6 shows the start of the game which tells

the player that he controls the Occupier with the arrow keys, and

will need to collect 100 points worth of “Wall Streets” before the

timer runs out to win. When the game starts (right of figure 6),

Wall Street dashes past the police until the player manages to

make it run into the occupier. At this point, Wall Street begins to

shrink (the system chose ShrinkComponent when it resolved the

non-terminal “_isRemovedBy ”). Occupier is growing and will

soon be stopped by police as the player moves the occupier to

collide with Wall Street. Wall Street shrinks until it bleeps out of

existence, the player gains 10 points, and a new one is spawned to

take its place. As the occupy movement grows to fill the screen,

overwhelming the police forces, removing Wall Street happens

without any actions from the player. And this is just the first game

generated! With just the press of a button user can generate other

games that carry different interpretation of the user’s input and

different gameplay.

6. FUTURE WORK
The first next steps for Game-O-Matic will be to improve on and

add to the recipe library as well as to increase the verb to micro-

rhetoric library. As we expand these libraries we will add new

functionality and improve the authoring process.

Another area that will be improved upon is how we choose micro-

rhetorics from the concept map verbs. As of now, there is a simple

mapping between verbs and the micro-rhetorics, but often

additional relationships are implied by the concept map that could

be caught by recognizing simple patterns and using those to select

micro-rhetorics. For example, if “A protects C” and “B harms C,”

it would make sense to use a micro-rhetoric that represented that

“A protects C from B” as opposed to representing each

relationship independently (which would likely not represent the

user’s intent).

We also will be looking at applying several smaller structure

recipes as opposed to just one. As of now, the games of Game-O-

Matic bear resemblance to the classic arcade games that helped

inspire it, and it is our hope that it will soon be able to generate

mash-ups.

We will also perform an evaluation in the form of having players

play a generated game, and then putting together a concept map

representing the game using the concept map interface. The

player’s map will be compared to the map used to generate the

game. While we expect that players will often create a map similar

to the map that generated the game, implying that the system does

create games which represent the meanings intended by the game

designer, we also expect that players will recognize additional

representations that were not part of the input which will inform

our understanding of videogame interpretation.

7. CONCLUSION
Using the techniques described above, Game-O-Matic is able to

create simple arcade-style games that represent the ideas put into

Figure 6. The instruction screen and a screenshot of the game generated from the concept map in figure 5.

the concept map input. While it has yet to be formally evaluated,

we believe that this approach enables the nontechnical users to

rapidly create editorial newsgames. We also hope that the games

of Game-O-Matic, which strive to represent using procedural

rhetoric, will help the world better understand how videogames

mean and can be used for the purposes of expression.

8. ACKNOWLEDGEMENTS
Game-O-Matic is being developed along with Bobby Schweizer,

Simon Ferrari, Chris DeLeon and Emmy Zhang.

9. REFERENCES

1. Bogost, I., Ferrari, S., and Schweizer, B. Newsgames:

Journalism at Play. MIT Press, Cambridge, MA, 2010.

2. Bogost, I. Persuasive Games. MIT Press, Cambridge,

MA, 2007.

3. Bogost, I. The Cartoonist Aims to Bring Newsgames to

the Masses. PBS MediaShift Idea Lab.

http://www.pbs.org/idealab/2010/09/the-cartoonist-aims-

to-bring-newsgames-to-the-masses243.html.

4. Cook, M. and Colton, S. Multi-faceted evolution of

simple arcade games. IEEE Conference on

Computational Intelligence and Games, (2011).

5. Francescani, C. Dozens arrested at Occupyʼs 6-month

anniversary rally. Reuters.

http://www.reuters.com/article/2012/03/18/us-usa-

occupy-wallstreet-idUSBRE82G0FC20120318.

6. Labs, P. PushButton Engine. 2011.

http://pushbuttonengine.com/.

7. Nelson, M.J. and Mateas, M. Towards Automated Game

Design. In AI*IA 2007: Artificial Intelligence and

Human-Oriented Computing, (2007), 626-637.

8. Smith, A. and Mateas, M. Variations Forever: Flexibly

Generating Rulesets from a Sculptable Design Space of

Mini-Games. IEEE Conference on Computational

Intelligence and Games (CIG), (2010).

9. Togelius, J. and Schmidhuber, J. An Experiment in

Automatic Game Design. IEEE Symposium on

Computational Intelligence and Games (CIG), (2008).

10. Treanor, M., Mateas, M., and Wardrip-Fruin, N.

Kaboom! is a Many-Splendored Thing : An

interpretation and design methodology for message-

driven games using graphical logics. Foundations of

Digital Games, (2010).

11. Treanor, M. and Mateas, M. Newsgames: Procedural

Rhetoric meets Political Cartoons. Digital Games

Research Association - DIGRA. 2009, (2009).

12. Treanor, M., Schweizer, B., Bogost, I., and Mateas, M.

Proceduralist Readings: How to find meaning in games

with graphical logics. Proceedings of Foundations of

Digital Games (FDG 2011), (2011).

